

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at huangjiacheng0709@outlook.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Contributing to Fundot

Thank you for your interest in Fundot! In this document, we are going to share with you some guidelines and rules for contributing.

Contents

	Code of Conduct

	Where should I get started?

	How can I contribute?

	Coding Style

Code of Conduct

This project and everyone participating in it is governed by the Fundot Code of Conduct. By participating, you are expected to uphold this code. Please report unacceptable behavior to huangjiacheng0709@outlook.com.

Where should I get started?

First of all, you should learn about the design philosophy of Fundot - “treating code as data”. There is a discussion about this topic in the quick guide we provide. This feature is technically called homoiconicity, so if you want to know more about it, please google this term. You may also feel free to ask any questions in GitHub Discussions.

Second, be familiar with the project structure we are currently developing. So far, Fundot development is divided into roughly three parts:

	core

	shared objects

	scripts

Fundot core is the most important and necessary part, which rules how Fundot reads, evaluates, and prints. The files related are placed mainly in the src directory, and there are public headers placed in the include directory. In short, Fundot core deals with the logical part of Fundot.

On the contrary, shared objects are dynamically linked libraries that deal with problems that cannot be solved by pure Fundot. For example, we do not provide quit function to exit Fundot in the core part, and there is no other ways to implement it by simply writing Fundot scripts. Therefore, we must wrap the C++ std::exit() function as shared objects. The implementation for standard Fundot shared objects are placed in the objects directory.

Here is the interesting thing: Everybody is able to write shared objects easily. As you may see in the source files in the objects directory, you are able to implement a simple shared object in less than 50 lines. Shared objects are a great way to extend Fundot. Now you know why we separete this part from the core. We do so not only to divide and conquer, but also to give others an example how to write an external Fundot package with C++.

Scripts are simple. They are just text files with .fun suffix that contains pure Fundot code. The init.fun file in the root directory is a great example for this class. By default, Fundot runs the init.fun in the project root if there is one before everything else starts.

How can I contribute?

To report a bug, use GitHub Issues and follow our ISSUE_TEMPLATE. Be sure to include the details about the specifc bugs you meet, and how to reproduce them.

For changes made in the core part, please think carefully about the neccessity, because we are trying to make the core as small as possible in order to better maintain it. Discuss it in GitHub Discussions before actually doing it.

For changes made in the shared objects part, think about the standard libraries of C/C++, Java, Python, and so on. Ask yourself: Is it better to make it a language standard or keep it as an external package? However, it is always encouraged to write packages for Fundot. You may send us your package website, and we will add it on a wiki page that lists available Fundot packages. Also, ask yourself: Can I implement the shared object in pure Fundot? Or is it highly related to efficiency problems?

After thinking clearly about the changes you want to make, please start a pull request and follow our PULL_REQUEST_TEMPLATE.

Coding Style

When coding Fundot, please follow the guidelines we provide. So far, please follow this C++ Style Guide.

Fundot Cheatsheet

This page provides quick references on how Fundot reads code as data.

Contents

	Comment

	Object

	Reader

Comment

Everything after semicolons ‘;’ are ignored, which can be used to comment Fundot code.

>>> (println "Hello, World!") ; Hello, World!

You may notice that there is only one semicolon above, but you may use any number of semicolons as you wish. However, there are conventions to properly use semicolons to comment in some other languages. Here is an example in Common Lisp Style Guide [https://lisp-lang.org/style-guide/#comment-hierarchy].

Comments that start with four semicolons, ;;;;, should appear at the top of a file, explaining its purpose.

Comments starting with three semicolons, ;;;, should be used to separate regions of the code.

Comments with two semicolons, ;;, should describe regions of code within a function or some other top-level form, while single-semicolon comments, ;, should just be short notes on a single line.

These tips are for Common Lisp, but it is recommended to also follow them in Fundot.

Object

Everything in Fundot is an object, which can be roughly divided into three categories.

	Atom

	Pair

	Container

Atom

An atom is the smallest building block of Fundot that cannot be furthuer divided, which should be separated by whitespace.

	String - “…”

	Number

	Boolean

	Null

	Symbol

String

A string is a sequence of zero or more characters enclosed in double quotes.

"Hello, World!"

Number

A number is an integer or a floating point number.

-5
3.14

Boolean

A boolean represents the two truth values of logic, which can either be true or false.

true
false

Null

A null is also treated as logical false in Fundot.

null

Symbol

A symbol is a collection of contiguous characters that refers to something. If fundot does not find a match with any of the above atoms, then a symbol is invoked.

pi

Pair

Because Fundot treats code as data, there is no syntax for operators. However, in order to improve readability, Fundot stores almost all commonly used binary operators in pair data sturctures.

	Setter - key : value

	Getter - owner.index

	Adder

	Subtractor

	More Operators

Setter

A setter is a key-value pair that is used with a set to create a map. When evaluated, the right hand side of the setter will be evaluated, and then the setter will be emplaced in the global scope.

>>> pi
pi
>>> pi : 3.14
3.14
>>> pi
3.14

Getter

A getter is a owner-index pair that is used to get the value with the specific index out of the owner.

>>> math : {pi : 3.14}
{pi : 3.14}
>>> math.pi
3.14

It is very convenient to use getters and setters together to access and modify values of owners.

>>> math.pi : 3.14159
3.14159
>>> math.pi
3.14159

Adder

Adders are great examples for how Fundot treats operators as data structures. When an adder is evaluated, it returns the sum of its left hand side and right hand side.

>>> 1 + 1
2

Subtractor

Similarly, when evaluated, a subtractor returns the difference of its left hand side and right hand side.

>>> 1 - 1
0

More Operators

Fundot provides almost all necessary binary operators. Their functionalities, precedence, and associativities should be similar to what you have learnt in other languages. Here is a list of them.

binary_operators : {".", "*", "/", "%", "+", "-", "<<", ">>", "<", ">", "<=", ">=", "==", "!=", "&", "^", "|", "&&", "||", "=", ":"}

Fundot also provides the unary operators listed below. They are treated as data structures that stores a single object.

unary_operators : {"+", "-", "!", "~"}

So far, Fundot promises to recognize unary operators at the front of a list.

>>> (-1) ;; '-' is at the front of the list.
(-1)
>>> -1 ;; Fundot reads objects as a list, so this is also okay.
(-1)

Container

Containers store a collection of objects, which are invoked by their corresponding delimiters.

	Set - { … }

	Vector - […]

	List - (…)

	Quote - ‘

Set

A set stores a collection of unique elements.

{pi, 1.414, "Hello"}

You may notice that there is no map container in Fundot. You are right. We don’t have a map, because we we provide the same functionality by combining sets and setter pairs. After all, a map is just a a set of key-value pairs.

{
 pi: 3.14,
 greeting: "Hello"
}

Vector

A vector is an ordered collection of objects.

[1, 2.71828, "Hello", 2]

List

A Fundot list is a doubly linked list of objects. This is also the fundamental evaluation unit in Fundot. A list is default to be evaluated in Fundot.

(alpha "beta" 2.71828)

Quote

A quote is a special form that contains one object after its invocation. The main effect of a quote is to prevent the contained object from being evaluated. For example, it is default for Fundot to evaluate a list by its front element, but placing a quote before that prevents it from being evaluated.

>>> (println 3.14)
3.14
null
>>> '(println 3.14)
(println 3.14)

Reader

All the input in Fundot are done by fundot::Reader. Here is the strategy how it works. The words are boring, so we provide some code examples below.

	The reader extracts an object from the input stream.

	The reader checks the first character. If the first character is a delimiter, such as ‘(‘, ‘[‘, ‘{‘, and so on, then the reader knows what type the upcoming data structure is.

	In a list, the only delimiter is ‘)’, but in sets and vectors, commas ‘,’ are used to separate elements. The elements in between delimiters are all stored in a list, and then will be parsed to see whether there are operators inside. A list keeps all the objects after parsing as its elements, while sets and vectors keep only the last element of the parsed object lists. The reader does so only for parsing operators, so please never write more than one top-level object between commas ‘,’, otherwise all the objects except the last one are ignored.

	If the first charcter is a number, then the reader extracts a number.

	If all the above conditions are not met, then the reader extracts a symbol, and checks whether that is true, falseor null. Then the reader returns any of them or simply a symbol.

	The reader stores the object in a list as what happens when extracting elements in sets and vectors between commas ‘,’.

	The reader repeatedly does the first and the second step, until a newline is met. Here is a point: Not every newline stops the reader from reading, only the ones after a complete object stop.

	As mentioned above, the list storing the objects is parsed to see whether there are operators. Then the last element of the parsed list is returned.

students : { ; 'students' and ':' are stored in a list.
; ^ ^ ^ ; The above newline does not stop reading,
 mike : { ; because '{' tells the reader to extract a set,
 age : 19, ; and the reader is still extracting an object.
 gender : male
 }, ; Now you see a comma ','. The elements in between
 tina : { ; are 'mike', ':', and a set.
 age : 20, ; They are then parsed and becomes a setter.
 gender : female ; This process is the same as below.
 }
} ; This newline stops reading, because it is
 ; after a complete object.
;; Now, there are three elements in the top-level list in reader:
;; two symbols 'student' and ':', and a set.
;; The list is parsed.
;; Because there is a ':', which denotes a setter, the three elements
;; are combined as a setter, whose first element is 'students', and
;; whose second element is the set.
;; After parsing, there is only one object, the setter, in the list.
;; Therefore, the last (and also the first) element, the setter,
;; is returned.

students : ; This newline stops reading, because the reader
{"some contents"} ; is not extracting any objects.
;; Note: Never do this when coding! It causes undefined behaviors,
;; or even serious errors.

x : 0 y : 0 ; Now there are 6 elements in the reader list:
;; one 'x', two ':', one 'y', and two 0s.
;; They are parsed and becomes two setters.
;; However, the reader only cares about the last one in list.
;; Therefore, the first setter is ignored.
;; Now you may understand what I meant by "The reader does
;; so only for parsing operators, so please never write more
;; than one top-level object between commas ',',
;; otherwise all the objects except the last one are ignored.".

C++ Style Guide

This guide is mainly based on C++ Core Guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines] and Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html]. It is very recommended to read them even though you don’t want to code Fundot interpreter, because this is a great way to learn C++ better and improve your coding skills.

Note: This guide is not mature and under development.

General Rules

When coding Fundot interpreter, you should treat this document with the highest priority, which means whenever you meet a conflict, please follow this guide. C++ Core Guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines] is a set of comprehensive guidelines for using C++ well, and Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html] is more about styles of coding. Whenever there is a conflict between them, please follow the former one.

There is no real guide of truth in C++ programming, and what we have provided is just one of the many possibilities, but we still need to follow this guide to better maintain our project. Therefore, if you are dealing with something not mentioned in all of those documents, just remember to keep everything clean and simple, and then you are fine.

Naming

	In general, choose meaningful and understandable names.

	Do not abbreviate a name unless the abbreviation is widely used.

File Names

File names should be all lowercase with underscore ‘_’ as the word separator.

Type Names

Type names should be in upper camel case (stylized as CamelCase).

Variable Names

	Variable names should be all lowercase with underscores ‘_’ as the word separator.

	Private data members should have trailing underscores.

Constant Names

Constant names should be in upper camel case (stylized as CamelCase).

Enumerator Names

Constant names should be in upper camel case (stylized as CamelCase).

Function Names

Function names should be in lower camel case (stylized as camelCase).

Macro Names

It is highly not recommended to define a macro in modern C++, except header guards, but if you do, macro names should be all upper case with underscores ‘_’ as the word separator.

Exceptions to Naming Rules

If you are naming something that is analogous to an existing C or C++ entity then you can follow the existing naming convention scheme.

Formatting

To help you format code correctly, we’ve created a clang-format [https://github.com/fundot/fundot/blob/master/.clang-format] file.

Line Length

Each line of text in your code should be at most 80 characters long.

Spaces vs. Tabs

Use only spaces, and indent 4 spaces at a time.

Layout

Use K&R-derived layout. In your editor, this style is often called “Stroustrup”. Please read NL.17: Use K&R-derived layout [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl17-use-kr-derived-layout] of C++ Core Guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines] to see an example of this style.

References

	C++ Core guidelines [https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines]

	Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html]

Quick Guide

Although Fundot is still under fast development, and huge changes may occur in each commit, there are still basic features that are quite stable. Therefore, it is time to write such a quick guide for others to understand the fundamental ideas and features of Fundot.

Contents

	Background

	Cheatsheet

	Set

	Setter

	Symbol

	Getter

	Vector

	List

	Quote

	Function

	Special Form

	Macro

	Conclusion

Background

What is treating code as data?

Treating code as data is not a new idea. In fact, it is a very old one, becasue it is one of the features of the second-oldest high-level programming languge Lisp, which means it has a history of at least half a century. You may wonder what exactly “treating code as data” means? Now look at the following expression, what comes into your mind?

("apple" "banana" "orange")

Did you come up with “a list of fruits” or something similar? Yes, it represents a data structure that contains “apple”, “banana”, and “orange”. Then what about the next expression?

sqrt(2)

If you are already familiar with at least one of the other programming languages, you may come up with “a function call to calculate the square root of 2”, which represents code. Now consider this one:

(sqrt 2)

If you come up with an idea of “a list of symbols that can be evaluated to calculate the square root of 2”, then you are there. This kind of expression could be not only code, but also data. In this way, we are able to treat code exactly the same way as we treat data. Great, now you may catch the feel of “treating code as data”. Here is an explanation for homoiconicity, the computer science terminology that describes treating code as data, from Wikipedia [https://en.wikipedia.org/wiki/Homoiconicity].

A language is homoiconic if a program written in it can be manipulated as data using the language, and thus the program’s internal representation can be inferred just by reading the program itself.

Then you may be curious why this kind of programming language is not so popular. First, Lisp and many of its dialects are quite popular, if you don’t compare them with the most popular programming languages, such as C++, Java, Python, and so on. Second, there is at least one reason that prevents them from being popular: the readability. To illustrate, I will show you a segment of Lisp code from the same Wikipedia page [https://en.wikipedia.org/wiki/Homoiconicity].

(setf expression (list '* (list 'sin 1.1) (list 'cos 2.03)))
-> (* (SIN 1.1) (COS 2.03)) ; Lisp returns and prints the result
(third expression) ; the third element of the expression
-> (COS 2.03)
(setf (first (third expression)) 'SIN)
; The expression is now (* (SIN 1.1) (SIN 2.03)).

You may now understand what I said about readability. It is really not easy to understand Lisp only from glance. The exprssions are kind of counter-intuitive. This is indeed the shortage of almost all kinds of homoiconic languages.

What makes Fundot special?

As I mentioned above, homoiconicity is a special feature of a programming language, and most of the homoiconic languages have poor readability. However, inspired by both Lisp and JSON, Fundot is able to provide a much more human readable solution of homoiconic programming. Fundot provides more built-in data sturtcures, such as pairs, vectors, sets, and so on, in order to be more expressive, but still, everything in Fundot is data. So far, we have learnt about the basic ideas of treating code as data. Now, let’s learn more about Fundot in details.

Cheatsheet

Before we dive into the world of Fundot, it is highly recommend to go through the Cheatsheet. After reading, you may have a complete view on how Fundot reads code as data. Most importrantly, you will learn about the basic building blocks of Fundot - the built-in data structures. If you feel boring about the last part of Cheatsheet, you may get back after you read everything else.

Set

In Fundot, a set is an important data structure, because many objects, including macros and functions, are not primitive types, but just a set.

{"apple", "banana", "orange"} ; A set of fruits.

A set contains a collection of unique elements. Together with setters, a key-value pair data sturcture that are only distinguished through their key parts, a set is able to be a map. In fact, most of the time, we are using a set just like a map in Fundot.

{
 name : "Mike",
 age : 19,
 gender : male
}

In order to manipulate a set, we are going to talk about setters and getters in details.

Setter

As shown above, a setter is in the form of

key : value

When a setter is evaluated, the value part is evaluated first, and then the setter is emplaced into the global scope. Therefore, setters are used to define global variables. Note that the key part of a setter is not evaluated.

>>> pi : 3.14
3.14
>>> pi
3.14
>>> pi_copy : pi
3.14
>>> pi_copy
3.14

Symbol

Symbols have appeared many times in the above, and you may already know its functionality: when evaluated, get its corresponding value. If there is not a corresponding value, then a symbol is self-evaluated. This is very natural and intuitive, so I think a simple example is enough.

>>> pi
pi
>>> pi : 3.14
3.14
>>> pi
3.14

Getter

A getter has the following form:

owner.index

When a getter is evaluated, both owner and index parts are evaluated first, and then it returns the element corresponding to the index in the owner.

>>> algorithm : {
 math : {pi : 3.14}
}
{math : {pi : 3.14}}
>>> algorithm.'math
{pi : 3.14}
>>> algorithm.'math.'pi ; You may also use algorithm.math.pi if
3.14 ; you are sure.

You may recursively use a getter to get a deeper element in a data structure. Notice that I have added a quote ‘ in front of the indices. I did so in order to prevent the symbols from being evaluated. Quotes will be described in details later. If you are sure that you have never defined variables named ‘math’ and ‘pi’, you may get rid of the quote, but using a quote is always safer if the indices are not intended to be evaluated. In order to modify a deeper element in a data stucture, getters are able to be used together with a setter.

>>> algorithm : {
 math : {pi : 3.14}
}
{math : {pi : 3.14}}
>>> another_pi : 3.14159
3.14159
>>> algorithm.'math.'pi : another_pi
3.14159
>>> algorithm
{math : {pi : 3.14159}}

Moreover, setters and getters are not only for sets, but also for all kinds of built-in data types in Fundot. So far, you may use setters and getters with vectors and lists, and we will soon add support for pairs as well.

>>> fruits : ["apple", "banana", "orange"]
["apple", "banana", "orange"]
>>> fruits.(2)
"orange"
>>> food : {
 fruit_list : ("apple" "banana" "orange")
}
{fruit_list : ("apple" "banana" "orange")}
>>> food.'fruit_list.(0)
"apple"

If you have not gone throught Cheatsheet, you need to pay attention that commas ‘,’ are necessary for vectors and sets, but should not be used in lists.

Vector

Vectors are also very natural and intuitive, and they are default not to be evaluated, so you may feel free to use vector as you do in other programming languages. Here is a simple example:

fruits : ["apple", "banana", "orange"]

List

In Fundot, a list is default to be evaluated. Therefore, lists are the tools that we use to apply special forms, macros, and functions, which will be explained in details in the following sections.

(apple banana orange) ; They are symbols instead of strings this time.

First, the front element of a list is evaluated. In this case, apple is evaluated. If the object returned is a special from or a macro, then the rest of the list will not be evaluated and directly passed as arguments to that special form or macro. In all other cases, the remaining elements are evaluated in order. Then if the front object is a function, the rest are passed as arguments to that function. If none of the above happens, the evaluated list is returned. However, if there is only one element after evaluated, that element is returned, and if there is only an empty list after evaluated, then null is returned. In short, the strategy for evaluating a list is as follows:

	Evaluate the front element.

	
	If the front is a special form or a macro, apply them directly,

	else evaluate the rest of the list.

	If the front is a function, apply it.

	
	Returnnull for an empty list,

	the element for a list with only one element, or

	the evaluated list itself.

Quote

However, sometimes you do not want a list, a setter, a getter, or something else to be evaluated. Then you need the quote. A quote stops Fundot from evaluating the quoted object, and returns that object directly. For example, if we want to simply create a shopping list, instead of calling a function or something, then we should do the following.

'("apple" "banana" "orange") ;; Quote using '

In Fundot, a quote is also a data structure who contains only one object, but we do also provide a special form one to use.

(quote ("apple" "banana" "orange")) ;; Quote using 'quote'

Function

Functions are crucial in most programming languages, and they are much more important here in Fundot.

What is a function?

We are not going to talk about the definitions of the terminology, but we are going to tell you what a function is like in Fundot.

{
 type : function, ; Type specifier.
 params : [function_params], ; A vector of parameters.
 body : function_body ; Function body to be evaluated,
} ; which can be any object.

Yes, a function in Fundot is just a set of some specific pairs. Precisely, a function set needs to have at least a type setter, a params setter, and a body setter. For example:

{
 type : function,
 params : [x],
 body : (if x < 0 (-x) x)
}

It is quite clear that this is a function that calculates the absolute value of x.

How to apply a function?

We have learnt that a list is default to be evaluated, and the front element of a list is always the first to be evaluated. If the front element after evaluated is a function, then the rest of the list is evaluated and passed as the arguments of the function.

>>> ({type : function, params : [x], body : (if x < 0 (-x) x)} (-1))
1

A set is self-evaluated, which means it returns itself in evaluation, so the front elemtent is exactly a function. Then the rest of the list (which is just the second element in this case) is evaluated and passed as arguments. Therefore, the result is 1, since the absolute value of -1 is 1. In Fundot, we provide the lambda expression as another way to generate anonymous functions.

;; (lambda [params] body) generats a function set
>>> ((lambda [x] (if x < 0 (-x) x)) (-1))
1

How to name a function?

Now you may complain that it is so boring to write the complet function set in order to apply it. Is there anyway to give an anonymous function a name? Yes! Because an anonymous function is just a specific set, we may use a setter to define a function.

abs : {
 type : function,
 params : [x],
 body : (if x < 0 (-x) x)
}

; or simply
abs : (lambda [x] (if x < 0 (-x) x))

(abs (-1)) ; Now you may use the name 'abs' to apply the function

Because ‘abs’ is first evaluated and becomes the function set, using the name is exactly the same as using an anonymous function.

Also, like most of the Lisp dialects, Fundot also provides a defun macro to generate a named function.

(defun abs [x] (if x < 0 (-x) x)) ;; Definition by 'defun'.

You may choose your favorite way to define a function, but keep in your mind to make your code clean and simple.

May I change the function?

Yes, you may! Because functions are just sets in Fundot, you may modify or redefine a function in the same way you treat a set.

>>> some_fun : (lambda [x] (if x < 0 (-x) x))
{type : function, params : [x], body : (if x < 0 (-x) x)}
>>> some_fun.type ; get type
function
>>> some_fun.params ; get params
[x]
>>> some_fun.body ; get body
(if x < 0 (-x) x)
>>> some_fun.body : (insert some_fun.body 3 'else) ; insert 'else'
(if x < 0 (-x) else x)
>>> some_fun.body.(0) : 'cond ; change the front to 'cond'
cond
>>> some_fun.body ; get body
(cond x < 0 (-x) else else x)
>>> some_fun : (lambda [x, y] x * y) ; redefinition
{type : function, params : [x, y], body : x * y}
>>> some_fun : "I am even not a function now."

The above changes are all trivial and not meaningful, but now you know the fact that a function can be manipulated in the same way you manipulate a set.

Special Form

Special forms are different from functions by their evaluation rules. As I mentioned, a list is fully evaluated before applying a function, but this is not true for a special form. Each special form has its own evaluation rules. They are usually built-in parts of Fundot, and are never defined by users using Fundot. You may also treat the operators, such as setters, getters, adders, and so on, as special forms, but a special form is often called in a list just like a function. For example:

;; (if condition true? false?)
>>> (if 0 < 1 "Yes" "No")
"Yes"

if is a special form, which evaluates the condition first. If the condition is true, it evaluates and returns the element after the condition, “Yes” in this case, otherwise it evaluates and returns the other one, “No” in this case. Because different special forms have different evaluation rules, we are not going to provide detailed information for them in this quick guide, but we are going to write a separate documentation for them.

Macro

Macros are also applied before the rest of a list is evaluated. They are important tools to extend Fundot language. More importantly, macros are written in Fundot and can be easily user-defined. A macro is also a specific set, which is similar to a function.

{
 type : macro, ; Type specifier.
 params : [macro_params], ; A vector of parameters.
 body : macro_body ; Macro body to be extended,
} ; which can be any object.

The macro system in Fundot is powerful, and we are able to use it to do amazing things. However, it is still not stable, so I will only provide an example code on how defun can be defined using macro system.

defun : {
 type : macro,
 params : [name, params, body],
 body : ('do
 name ': ('lambda params body))
}

For you to better understand how the macro system works, I will demonstrate the process step by step.

(defun abs [x] (if x < 0 (-x) x)) ; Fundot received a list.
 ^
 'defun'is evaluated and becomes
({body : ..., params : ..., type : macro} abs [x] (if x < 0 (-x) x))
 ^ ^ ^
 Fundot knows that the front is of type macro
 and passes them directly as arguments.
('do name ': ('lambda params body)) ; This is the body of the macro
 After passing arguments and evaluating, it becomes
(do abs : (lambda [x] (if x < 0 (-x) x)))
 This is exactly the expansion of 'defun'.
 Note : 'do' is a function that returns the last element.
 Finally, the expression below is evaluated.
abs : (lambda [x] (if x < 0 (-x) x))
 ^
 Now abs has been created by using 'defun'.

In short, a macro is generally not used to calculate something, but used to generate a Fundot expression. In the above case,

(defun abs [x] (if x < 0 (-x) x))

generates

(do abs : (lambda [x] (if x < 0 (-x) x)))

Because the macro system is much more complicated and powerful than what I have shown, I will stop here in order not to make this quick guide a long one.

Conclusion

So far, you have learnt the basics of Fundot. We may add more features to Fundot in the future, but what we mentioned in this guide are fundamental building blocks or even the design philosophy, so they should be quite stable. Thank you very much for going through this guide.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

